用Python實(shí)現(xiàn)Newton插值法
def diff(xi,yi,n): ''' param xi:插值節(jié)點(diǎn)xi param yi:插值節(jié)點(diǎn)yi param n: 求幾階差商 return: n階差商 ''' if len(xi) != len(yi): #xi和yi必須保證長(zhǎng)度一致return else:diff_quot = [[] for i in range(n)]for j in range(1,n+1): if j == 1:for i in range(n+1-j): diff_quot[j-1].append((yi[i]-yi[i+1]) / (xi[i] - xi[i + 1])) else:for i in range(n+1-j): diff_quot[j-1].append((diff_quot[j-2][i]-diff_quot[j-2][i+1]) / (xi[i] - xi[i + j])) return diff_quot
測(cè)試一下:
xi = [1.615,1.634,1.702,1.828]yi = [2.41450,2.46259,2.65271,3.03035]n = 3print(diff(xi,yi,n))
返回的差商結(jié)果為:
[[2.53105263157897, 2.7958823529411716, 2.997142857142854], [3.0440197857724347, 1.0374252793901158], [-9.420631485362996]]
2. 牛頓插值實(shí)現(xiàn)def Newton(x): f = yi[0] v = [] r = 1 for i in range(n):r *= (x - xi[i])v.append(r)f += diff_quot[i][0] * v[i] return f
測(cè)試一下:
x = 1.682print(Newton(x))
結(jié)果為:
2.5944760289639732
3.完整Python代碼def Newton(xi,yi,n,x): ''' param xi:插值節(jié)點(diǎn)xi param yi:插值節(jié)點(diǎn)yi param n: 求幾階差商 param x: 代求近似值 return: n階差商 ''' if len(xi) != len(yi): #xi和yi必須保證長(zhǎng)度一致return else:diff_quot = [[] for i in range(n)]for j in range(1,n+1): if j == 1:for i in range(n+1-j): diff_quot[j-1].append((yi[i]-yi[i+1]) / (xi[i] - xi[i + 1])) else:for i in range(n+1-j): diff_quot[j-1].append((diff_quot[j-2][i]-diff_quot[j-2][i+1]) / (xi[i] - xi[i + j])) print(diff_quot)f = yi[0] v = [] r = 1 for i in range(n):r *= (x - xi[i])v.append(r)f += diff_quot[i][0] * v[i] return f
到此這篇關(guān)于用Python實(shí)現(xiàn)牛頓插值法的文章就介紹到這了,更多相關(guān)python牛頓插值法內(nèi)容請(qǐng)搜索好吧啦網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持好吧啦網(wǎng)!
相關(guān)文章:
1. 如何基于Python Matplotlib實(shí)現(xiàn)網(wǎng)格動(dòng)畫2. 利用promise及參數(shù)解構(gòu)封裝ajax請(qǐng)求的方法3. ASP 信息提示函數(shù)并作返回或者轉(zhuǎn)向4. asp(vbs)Rs.Open和Conn.Execute的詳解和區(qū)別及&H0001的說明5. ThinkPHP5實(shí)現(xiàn)JWT Token認(rèn)證的過程(親測(cè)可用)6. Ajax實(shí)現(xiàn)表格中信息不刷新頁面進(jìn)行更新數(shù)據(jù)7. JSP數(shù)據(jù)交互實(shí)現(xiàn)過程解析8. windows服務(wù)器使用IIS時(shí)thinkphp搜索中文無效問題9. .NET中l(wèi)ambda表達(dá)式合并問題及解決方法10. PHP設(shè)計(jì)模式中工廠模式深入詳解
