python 實現(xiàn)數(shù)據(jù)庫中數(shù)據(jù)添加、查詢與更新的示例代碼
一、前言
最近做web網(wǎng)站的測試,遇到很多需要批量造數(shù)據(jù)的功能;比如某個頁面展示數(shù)據(jù)條數(shù)需要達到10000條進行測試,此時手動構(gòu)造數(shù)據(jù)肯定是不可能的,此時只能通過python腳本進行自動構(gòu)造數(shù)據(jù);本次構(gòu)造數(shù)據(jù)主要涉及到在某個表里面批量添加數(shù)據(jù)、在關(guān)聯(lián)的幾個表中同步批量添加數(shù)據(jù)、批量查詢某個表中符合條件的數(shù)據(jù)、批量更新某個表中符合條件的數(shù)據(jù)等。
二、數(shù)據(jù)添加
即批量添加數(shù)據(jù)到某個表中。
insert_data.py
import pymysqlimport randomimport timefrom get_userinfo import get_userinfofrom get_info import get_infofrom get_tags import get_tagsfrom get_tuser_id import get_utagclass DatabaseAccess(): def __init__(self): self.__db_host = 'xxxxx' self.__db_port = 3307 self.__db_user = 'root' self.__db_password = '123456' self.__db_database = 'xxxxxx' # 連接數(shù)據(jù)庫 def isConnectionOpen(self): self.__db = pymysql.connect( host=self.__db_host, port=self.__db_port, user=self.__db_user, password=self.__db_password, database=self.__db_database, charset=’utf8’ ) # 插入數(shù)據(jù) def linesinsert(self,n,user_id,tags_id,created_at): self.isConnectionOpen() # 創(chuàng)建游標 global cursor conn = self.__db.cursor() try: sql1 = ’’’ INSERT INTO `codeforge_new`.`cf_user_tag`(`id`, `user_id`, `tag_id`, `created_at`, `updated_at`) VALUES ({}, {}, {}, ’{}’, ’{}’); ’’’.format(n,user_id,tags_id,created_at,created_at) # 執(zhí)行SQLconn.execute(sql1,) except Exception as e: print(e) finally: # 關(guān)閉游標 conn.close() self.__db.commit() self.__db.close() def get_data(self):# 生成對應(yīng)數(shù)據(jù) 1000條 for i in range(0,1001): created_at = time.strftime(’%Y-%m-%d %H:%M:%S’,time.localtime()) # print(create_at) # 用戶id tuserids = [] tuserid_list = get_utag() for tuserid in tuserid_list:tuserids.append(tuserid[0]) # print(tuserids) userid_list = get_userinfo() user_id = random.choice(userid_list)[0] if user_id not in tuserids:user_id=user_id # 標簽idtagsid_list = get_tags()tags_id = random.choice(tagsid_list)[0]self.linesinsert(i,user_id,tags_id,created_at)if __name__ == '__main__': # 實例化對象 db=DatabaseAccess() db.get_data()
二、數(shù)據(jù)批量查詢
select_data.py
import pymysqlimport pandas as pdimport numpy as npdef get_tags(): # 連接數(shù)據(jù)庫,地址,端口,用戶名,密碼,數(shù)據(jù)庫名稱,數(shù)據(jù)格式 conn = pymysql.connect(host=’xxx.xxx.xxx.xxx’,port=3307,user=’root’,passwd=’123456’,db=’xxxx’,charset=’utf8’) cur = conn.cursor() # 表cf_users中獲取所有用戶id sql = ’select id from cf_tags where id between 204 and 298’ # 將user_id列轉(zhuǎn)成列表輸出 df = pd.read_sql(sql,con=conn) # 先使用array()將DataFrame轉(zhuǎn)換一下 df1 = np.array(df) # 再將轉(zhuǎn)換后的數(shù)據(jù)用tolist()轉(zhuǎn)成列表 df2 = df1.tolist() # cur.execute(sql) # data = cur.fetchone() # print(df) # print(df1) # print(df2) return df2 conn.close()
三、批量更新數(shù)據(jù)
select_data.py
import pymysqlimport pandas as pdimport numpy as npdef get_tags(): # 連接數(shù)據(jù)庫,地址,端口,用戶名,密碼,數(shù)據(jù)庫名稱,數(shù)據(jù)格式 conn = pymysql.connect(host=’xxx.xxx.xxx.xxx’,port=3307,user=’root’,passwd=’123456’,db=’xxxx’,charset=’utf8’) cur = conn.cursor() # 表cf_users中獲取所有用戶id sql = ’select id from cf_tags where id between 204 and 298’ # 將user_id列轉(zhuǎn)成列表輸出 df = pd.read_sql(sql,con=conn) # 先使用array()將DataFrame轉(zhuǎn)換一下 df1 = np.array(df) # 再將轉(zhuǎn)換后的數(shù)據(jù)用tolist()轉(zhuǎn)成列表 df2 = df1.tolist() # cur.execute(sql) # data = cur.fetchone() # print(df) # print(df1) # print(df2) return df2 conn.close()
以上就是python 實現(xiàn)數(shù)據(jù)庫中數(shù)據(jù)添加、查詢與更新的示例代碼的詳細內(nèi)容,更多關(guān)于python 數(shù)據(jù)庫添加、查詢與更新的資料請關(guān)注好吧啦網(wǎng)其它相關(guān)文章!
相關(guān)文章: