国产成人精品亚洲777人妖,欧美日韩精品一区视频,最新亚洲国产,国产乱码精品一区二区亚洲

您的位置:首頁(yè)技術(shù)文章
文章詳情頁(yè)

python基于機(jī)器學(xué)習(xí)預(yù)測(cè)股票交易信號(hào)

瀏覽:40日期:2022-06-18 13:11:57
目錄引言數(shù)據(jù)獲取與指標(biāo)構(gòu)建數(shù)據(jù)獲取構(gòu)建目標(biāo)變量(target variable)技術(shù)指標(biāo)特征構(gòu)建計(jì)算技術(shù)指標(biāo)模型預(yù)測(cè)與評(píng)估加入技術(shù)指標(biāo)特征特征的優(yōu)化結(jié)語(yǔ)引言

近年來(lái),隨著技術(shù)的發(fā)展,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)在金融資產(chǎn)量化研究上的應(yīng)用越來(lái)越廣泛和深入。目前,大量數(shù)據(jù)科學(xué)家在Kaggle網(wǎng)站上發(fā)布了使用機(jī)器學(xué)習(xí)/深度學(xué)習(xí)模型對(duì)股票、期貨、比特幣等金融資產(chǎn)做預(yù)測(cè)和分析的文章。從金融投資的角度看,這些文章可能缺乏一定的理論基礎(chǔ)支撐(或交易思維),大都是基于數(shù)據(jù)挖掘。但從量化的角度看,有很多值得我們學(xué)習(xí)參考的地方,尤其是Pyhton的深入應(yīng)用、數(shù)據(jù)可視化和機(jī)器學(xué)習(xí)模型的評(píng)估與優(yōu)化等。下面借鑒Kaggle上的一篇文章《Building an Asset Trading Strategy》,以上證指數(shù)為例,構(gòu)建雙均線交易策略,以交易信號(hào)為目標(biāo)變量,以技術(shù)分析指標(biāo)作為預(yù)測(cè)特征變量,使用多種機(jī)器學(xué)習(xí)模型進(jìn)行對(duì)比評(píng)估和優(yōu)化。文中的特征變量構(gòu)建和提取,機(jī)器學(xué)習(xí)模型的對(duì)比評(píng)估和結(jié)果可視化都是很好的參考模板。

數(shù)據(jù)獲取與指標(biāo)構(gòu)建

先引入需要用到的libraries,這是Python語(yǔ)言的突出特點(diǎn)之一。這些涉及到的包比較多,包括常用的numpy、pandas、matplotlib,技術(shù)分析talib,機(jī)器學(xué)習(xí)sklearn和數(shù)據(jù)包tushare等。

#先引入后面可能用到的librariesimport numpy as npimport pandas as pd import tushare as ts#技術(shù)指標(biāo)import talib as ta#機(jī)器學(xué)習(xí)模塊from sklearn.linear_model import LogisticRegressionfrom sklearn.discriminant_analysis import LinearDiscriminantAnalysisfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.naive_bayes import GaussianNBfrom sklearn.ensemble import GradientBoostingClassifierfrom xgboost import XGBClassifier,XGBRegressorfrom catboost import CatBoostClassifier,CatBoostRegressorfrom sklearn.ensemble import RandomForestClassifier,RandomForestRegressorfrom sklearn.model_selection import train_test_split,KFold,cross_val_scorefrom sklearn.metrics import accuracy_scoreimport shapfrom sklearn.feature_selection import SelectKBest,f_regressionfrom sklearn import preprocessing#畫(huà)圖import seaborn as snsimport matplotlib.pyplot as pltimport plotly.graph_objects as goimport plotly.express as px%matplotlib inline #正常顯示畫(huà)圖時(shí)出現(xiàn)的中文和負(fù)號(hào)from pylab import mplmpl.rcParams[’font.sans-serif’]=[’SimHei’]mpl.rcParams[’axes.unicode_minus’]=False數(shù)據(jù)獲取

用tushare獲取上證行情數(shù)據(jù)作為分析樣本。

#默認(rèn)以上證指數(shù)交易數(shù)據(jù)為例def get_data(code=’sh’,start=’2000-01-01’,end=’2021-03-02’): df=ts.get_k_data(’sh’,start=’2005’) df.index=pd.to_datetime(df.date) df=df[[’open’,’high’,’low’,’close’,’volume’]] return dfdf=get_data()df_train,df_test=df.loc[:’2017’],df.loc[’2018’:]構(gòu)建目標(biāo)變量(target variable)

以交易信號(hào)作為目標(biāo)變量,使用價(jià)格信息和技術(shù)指標(biāo)作為特征變量進(jìn)行預(yù)測(cè)分析。以雙均線交易策略為例,當(dāng)短期均線向上突破長(zhǎng)期均線時(shí)形成買(mǎi)入信號(hào)(設(shè)定為1),當(dāng)短期均線向下跌破長(zhǎng)期均線時(shí)發(fā)出賣(mài)出信號(hào)(設(shè)定為0),然后再使用機(jī)器學(xué)習(xí)模型進(jìn)行預(yù)測(cè)和評(píng)估。這里將短期移動(dòng)平均值(SMA1)和長(zhǎng)期移動(dòng)平均值(SMA2)的參數(shù)分別設(shè)置為10和60,二者的設(shè)定具有一定的任意性,參數(shù)的選擇會(huì)影響后續(xù)結(jié)果,所以理想情況下需要進(jìn)行參數(shù)優(yōu)化來(lái)找到最優(yōu)值。

def trade_signal(data,short=10,long=60,tr_id=False): data[’SMA1’] = data.close.rolling(short).mean() data[’SMA2’] = data.close.rolling(long).mean() data[’signal’] = np.where(data[’SMA1’] >data[’SMA2’], 1.0, 0.0) if(tr_id is not True):display(data[’signal’].value_counts())df_tr1 = df_train.copy(deep=True) df_te1 = df_test.copy(deep=True) trade_signal(df_tr1) #trade_signal(df_te1,tr_id=True) plt.figure(figsize=(14,12), dpi=80)ax1 = plt.subplot(211)plt.plot(df_tr1.close,color=’b’)plt.title(’上證指數(shù)走勢(shì)’,size=15)plt.xlabel(’’)ax2 = plt.subplot(212)plt.plot(df_tr1.signal,color=’r’)plt.title(’交易信號(hào)’,size=15)plt.xlabel(’’)plt.show()

python基于機(jī)器學(xué)習(xí)預(yù)測(cè)股票交易信號(hào)

df_tr1[[’SMA1’,’SMA2’,’signal’]].iloc[-250:].plot(figsize=(14,6),secondary_y=[’signal’])plt.show()

python基于機(jī)器學(xué)習(xí)預(yù)測(cè)股票交易信號(hào)

#刪除均線變量df_tr1=df_tr1.drop([’SMA1’,’SMA2’], axis=1)df_te1=df_te1.drop([’SMA1’,’SMA2’], axis=1)#畫(huà)目標(biāo)變量與其他變量之間的相關(guān)系數(shù)圖cmap = sns.diverging_palette(220, 10, as_cmap=True)def corrMat(df,target=’demand’,figsize=(9,0.5),ret_id=False): corr_mat = df.corr().round(2);shape = corr_mat.shape[0] corr_mat = corr_mat.transpose() corr = corr_mat.loc[:, df.columns == target].transpose().copy() if(ret_id is False):f, ax = plt.subplots(figsize=figsize)sns.heatmap(corr,vmin=-0.3,vmax=0.3,center=0, cmap=cmap,square=False,lw=2,annot=True,cbar=False)plt.title(f’Feature Correlation to {target}’) if(ret_id):return corrcorrMat(df_tr1,’signal’,figsize=(7,0.5))

python基于機(jī)器學(xué)習(xí)預(yù)測(cè)股票交易信號(hào)

當(dāng)前的特征open、high、low、close、volumes與目標(biāo)變量的線性相關(guān)值非常小,這可能意味著存在高非線性,相對(duì)平穩(wěn)值的穩(wěn)定振蕩(圓形散射),或者也許它們不是理想的預(yù)測(cè)特征變量,所以下面需要進(jìn)行特征構(gòu)建和選取。

技術(shù)指標(biāo)特征構(gòu)建

為方便分析,下面以常見(jiàn)的幾個(gè)技術(shù)指標(biāo)作為特征引入特征矩陣,具體指標(biāo)有:

移動(dòng)平均線:移動(dòng)平均線通過(guò)減少噪音來(lái)指示價(jià)格的運(yùn)動(dòng)趨勢(shì)。

隨機(jī)振蕩器%K和%D:隨機(jī)振蕩器是一個(gè)動(dòng)量指示器,比較特定的證券收盤(pán)價(jià)和一定時(shí)期內(nèi)的價(jià)格范圍。%K、%D分別為慢、快指標(biāo)。

相對(duì)強(qiáng)弱指數(shù)(RSI):動(dòng)量指標(biāo),衡量最近價(jià)格變化的幅度,以評(píng)估股票或其他資產(chǎn)的價(jià)格超買(mǎi)或超賣(mài)情況。

變化率(ROC):動(dòng)量振蕩器,測(cè)量當(dāng)前價(jià)格和n期過(guò)去價(jià)格之間的百分比變化。ROC值越高越有可能超買(mǎi),越低可能超賣(mài)。

動(dòng)量(MOM):證券價(jià)格或成交量加速的速度;價(jià)格變化的速度。

#復(fù)制之前的數(shù)據(jù)df_tr2=df_tr1.copy(deep=True)df_te2=df_te1.copy(deep=True)計(jì)算技術(shù)指標(biāo)

#使用talib模塊直接計(jì)算相關(guān)技術(shù)指標(biāo)#下面參數(shù)的選取具有主觀性def indicators(data): data[’MA13’]=ta.MA(data.close,timeperiod=13) data[’MA34’]=ta.MA(data.close,timeperiod=34) data[’MA89’]=ta.MA(data.close,timeperiod=89) data[’EMA10’]=ta.EMA(data.close,timeperiod=10) data[’EMA30’]=ta.EMA(data.close,timeperiod=30) data[’EMA200’]=ta.EMA(data.close,timeperiod=200) data[’MOM10’]=ta.MOM(data.close,timeperiod=10) data[’MOM30’]=ta.MOM(data.close,timeperiod=30) data[’RSI10’]=ta.RSI(data.close,timeperiod=10) data[’RSI30’]=ta.RSI(data.close,timeperiod=30) data[’RS200’]=ta.RSI(data.close,timeperiod=200) data[’K10’],data[’D10’]=ta.STOCH(data.high,data.low,data.close, fastk_period=10) data[’K30’],data[’D30’]=ta.STOCH(data.high,data.low,data.close, fastk_period=30) data[’K20’],data[’D200’]=ta.STOCH(data.high,data.low,data.close, fastk_period=200)indicators(df_tr2)indicators(df_te2)corrMat(df_tr2,’signal’,figsize=(15,0.5))

python基于機(jī)器學(xué)習(xí)預(yù)測(cè)股票交易信號(hào)

上圖可以看到明顯線性相關(guān)的一組特征是作為特征工程的結(jié)果創(chuàng)建的。如果在特征矩陣中使用基本數(shù)據(jù)集特征,很可能對(duì)目標(biāo)變量的變化影響很小或沒(méi)有影響。另一方面,新創(chuàng)建的特征具有相當(dāng)寬的相關(guān)值范圍,這是相當(dāng)重要的;與目標(biāo)變量(交易信號(hào))的相關(guān)性不算特別高。

#刪除缺失值df_tr2 = df_tr2.dropna() df_te2 = df_te2.dropna()模型預(yù)測(cè)與評(píng)估

下面使用常用的機(jī)器學(xué)習(xí)算法分別對(duì)數(shù)據(jù)進(jìn)行擬合和交叉驗(yàn)證評(píng)估

models.append((’RF’, RandomForestClassifier(n_estimators=25)))models = []#輕量級(jí)模型 #線性監(jiān)督模型models.append((’LR’, LogisticRegression(n_jobs=-1)))models.append((’TREE’, DecisionTreeClassifier())) #非監(jiān)督模型models.append((’LDA’, LinearDiscriminantAnalysis())) models.append((’KNN’, KNeighborsClassifier())) models.append((’NB’, GaussianNB())) #高級(jí)模型models.append((’GBM’, GradientBoostingClassifier(n_estimators=25)))models.append((’XGB’,XGBClassifier(n_estimators=25,use_label_encoder=False)))models.append((’CAT’,CatBoostClassifier(silent=True,n_estimators=25)))

構(gòu)建模型評(píng)估函數(shù)

def modelEval(ldf,feature=’signal’,split_id=[None,None],eval_id=[True,True,True,True], n_fold=5,scoring=’accuracy’,cv_yrange=None,hm_vvals=[0.5,1.0,0.75]): ’’’ Split Train/Evaluation <DataFrame> Set Split ’’’ # split_id : Train/Test split [%,timestamp], whichever is not None # test_id : Evaluate trained model on test set only if(split_id[0] is not None):train_df,eval_df = train_test_split(ldf,test_size=split_id[0],shuffle=False) elif(split_id[1] is not None):train_df = df.loc[:split_id[1]]; eval_df = df.loc[split_id[1]:] else:print(’Choose One Splitting Method Only’) ’’’ Train/Test Feature Matrices + Target Variables Split’’’ y_train = train_df[feature] X_train = train_df.loc[:, train_df.columns != feature] y_eval = eval_df[feature] X_eval = eval_df.loc[:, eval_df.columns != feature] X_one = pd.concat([X_train,X_eval],axis=0) y_one = pd.concat([y_train,y_eval],axis=0) ’’’ Cross Validation, Training/Evaluation, one evaluation’’’ lst_res = []; names = []; lst_train = []; lst_eval = []; lst_one = []; lst_res_mean = [] if(any(eval_id)):for name, model in models: names.append(name) # Cross Validation Model on Training Se if(eval_id[0]):kfold = KFold(n_splits=n_fold, shuffle=True)cv_res = cross_val_score(model,X_train,y_train, cv=kfold, scoring=scoring)lst_res.append(cv_res) # Evaluate Fit Model on Training Data if(eval_id[1]):res = model.fit(X_train,y_train)train_res = accuracy_score(res.predict(X_train),y_train); lst_train.append(train_res) if(eval_id[2]):if(eval_id[1] is False): # If training hasn’t been called yet res = model.fit(X_train,y_train)eval_res = accuracy_score(res.predict(X_eval),y_eval); lst_eval.append(eval_res) # Evaluate model on entire dataset if(eval_id[3]):res = model.fit(X_one,y_one)one_res = accuracy_score(res.predict(X_one),y_one); lst_one.append(one_res) ’’’ [out] Verbal Outputs ’’’ lst_res_mean.append(cv_res.mean()) fn1 = cv_res.mean() fn2 = cv_res.std(); fn3 = train_res fn4 = eval_res fn5 = one_res s0 = pd.Series(np.array(lst_res_mean),index=names) s1 = pd.Series(np.array(lst_train),index=names) s2 = pd.Series(np.array(lst_eval),index=names) s3 = pd.Series(np.array(lst_one),index=names) pdf = pd.concat([s0,s1,s2,s3],axis=1) pdf.columns = [’cv_average’,’train’,’test’,’all’] ’’’ Visual Ouputs ’’’ sns.set(style='whitegrid') fig,ax = plt.subplots(1,2,figsize=(15,4)) ax[0].set_title(f’{n_fold} Cross Validation Results’) sns.boxplot(data=lst_res, ax=ax[0], orient='v',width=0.3) ax[0].set_xticklabels(names) sns.stripplot(data=lst_res,ax=ax[0], orient=’v’,color='.3',linewidth=1) ax[0].set_xticklabels(names) ax[0].xaxis.grid(True) ax[0].set(xlabel='') if(cv_yrange is not None):ax[0].set_ylim(cv_yrange) sns.despine(trim=True, left=True) sns.heatmap(pdf,vmin=hm_vvals[0],vmax=hm_vvals[1],center=hm_vvals[2], ax=ax[1],square=False,lw=2,annot=True,fmt=’.3f’,cmap=’Blues’) ax[1].set_title(’Accuracy Scores’) plt.show()

基準(zhǔn)模型:使用原始行情數(shù)據(jù)作為特征

modelEval(df_tr1,split_id=[0.2,None])

python基于機(jī)器學(xué)習(xí)預(yù)測(cè)股票交易信號(hào)

結(jié)果顯示,cross_val_score徘徊在準(zhǔn)確度= 0.5的區(qū)域,這表明僅使用指數(shù)/股票的價(jià)格數(shù)據(jù)(開(kāi)盤(pán)、最高、最低、成交量、收盤(pán))很難準(zhǔn)確預(yù)測(cè)價(jià)格變動(dòng)的方向性。大多數(shù)模型的訓(xùn)練得分往往高于交叉驗(yàn)證得分。有意思的是,DecisionTreeClassifier & RandomForest即使很少估計(jì)可以達(dá)到非常高的分?jǐn)?shù),但交叉驗(yàn)證的得分卻很低,表明對(duì)訓(xùn)練數(shù)據(jù)可能存在過(guò)度擬合了。

加入技術(shù)指標(biāo)特征

modelEval(df_tr2,split_id=[0.2,None],cv_yrange=(0.8,1.0),hm_vvals=[0.8,1.0,0.9])

結(jié)果表明,與基準(zhǔn)模型相比,準(zhǔn)確率得分有了非常顯著的提高。線性判別分析(LDA)的表現(xiàn)非常出色,不僅在訓(xùn)練集上,而且在交叉驗(yàn)證中,得分顯著提高。毫無(wú)疑問(wèn),更復(fù)雜的模型GBM,XGB,CAT,RF在全樣本中評(píng)估得分較高。與有監(jiān)督學(xué)習(xí)模型相比,kNN和GaussianNB的無(wú)監(jiān)督模型表現(xiàn)較差。

特征的優(yōu)化

def feature_importance(ldf,feature=’signal’,n_est=100): # Input dataframe containing feature & target variable X = ldf.copy() y = ldf[feature].copy() del X[feature] # CORRELATION imp = corrMat(ldf,feature,figsize=(15,0.5),ret_id=True) del imp[feature] s1 = imp.squeeze(axis=0);s1 = abs(s1) s1.name = ’Correlation’ # SHAP model = CatBoostRegressor(silent=True,n_estimators=n_est).fit(X,y) explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(X) shap_sum = np.abs(shap_values).mean(axis=0) s2 = pd.Series(shap_sum,index=X.columns,name=’Cat_SHAP’).T # RANDOMFOREST model = RandomForestRegressor(n_est,random_state=0, n_jobs=-1) fit = model.fit(X,y) rf_fi = pd.DataFrame(model.feature_importances_,index=X.columns, columns=[’RandForest’]).sort_values(’RandForest’,ascending=False) s3 = rf_fi.T.squeeze(axis=0) # XGB model=XGBRegressor(n_estimators=n_est,learning_rate=0.5,verbosity = 0) model.fit(X,y) data = model.feature_importances_ s4 = pd.Series(data,index=X.columns,name=’XGB’).T # KBEST model = SelectKBest(k=5, score_func=f_regression) fit = model.fit(X,y) data = fit.scores_ s5 = pd.Series(data,index=X.columns,name=’K_best’) # Combine Scores df0 = pd.concat([s1,s2,s3,s4,s5],axis=1) df0.rename(columns={’target’:’lin corr’}) x = df0.values min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) df = pd.DataFrame(x_scaled,index=df0.index,columns=df0.columns) df = df.rename_axis(’Feature Importance via’, axis=1) df = df.rename_axis(’Feature’, axis=0) pd.options.plotting.backend = 'plotly' fig = df.plot(kind=’bar’,title=’Scaled Feature Importance’) fig.show()feature_importance(df_tr2)

python基于機(jī)器學(xué)習(xí)預(yù)測(cè)股票交易信號(hào)

注意到,對(duì)于很多特征,相關(guān)性(Pearson’s value)小的在其他方法中也會(huì)給出小的得分值。同樣,高相關(guān)的特征在其他特征重要性方法中得分也很高。當(dāng)談到特征的重要性時(shí),有一些特征顯示出一些輕微的不一致,總的來(lái)說(shuō),大多數(shù)方法都可以觀察到特征評(píng)分的相似性。在機(jī)器學(xué)習(xí)中,某些特征對(duì)于大多數(shù)方法來(lái)說(shuō)都有一個(gè)非常低的相對(duì)分?jǐn)?shù)值,因此可能沒(méi)有什么影響,即使把它們刪除,也不會(huì)降低模型的準(zhǔn)確性。刪除可能不受影響的特性將使整個(gè)方法更加有效,同時(shí)可以專注于更長(zhǎng)和更深入的超參數(shù)網(wǎng)格搜索,可能得到比原來(lái)模型更準(zhǔn)確的結(jié)果。

df_tr2_FI = df_tr2.drop(columns=[’open’,’high’,’low’,’close’,’EMA10’])modelEval(df_tr2_FI,split_id=[0.2,None],cv_yrange=(0.8,1.0),hm_vvals=[0.8,1.0,0.9])

python基于機(jī)器學(xué)習(xí)預(yù)測(cè)股票交易信號(hào)

結(jié)語(yǔ)

本文只是以上證指數(shù)為例,以技術(shù)指標(biāo)作為特征,使用機(jī)器學(xué)習(xí)算法對(duì)股票交易信號(hào)(注意這里不是股價(jià)或收益率)進(jìn)行預(yù)測(cè)評(píng)估,目的在于向讀者展示Python機(jī)器學(xué)習(xí)在金融量化研究上的應(yīng)用。從金融維度來(lái)看,分析的深度較淺,實(shí)際上對(duì)股價(jià)預(yù)測(cè)有用的特征有很多,包括(1)外在因素, 如股票相關(guān)公司的競(jìng)爭(zhēng)對(duì)手、客戶、全球經(jīng)濟(jì)、地緣政治形勢(shì)、財(cái)政和貨幣政策、資本獲取等。因此,公司股價(jià)可能不僅與其他公司的股價(jià)相關(guān),還與大宗商品、外匯、廣義指數(shù)、甚至固定收益證券等其他資產(chǎn)相關(guān);(2)股價(jià)市場(chǎng)因素,如很多投資者關(guān)注技術(shù)指標(biāo)。(3)公司基本面因素,如公司的年度和季度報(bào)告可以用來(lái)提取或確定關(guān)鍵指標(biāo),如凈資產(chǎn)收益率(ROE)和市盈率(price -to - earnings)。此外,新聞可以預(yù)示即將發(fā)生的事件,這些事件可能會(huì)推動(dòng)股價(jià)向某個(gè)方向發(fā)展。當(dāng)關(guān)注股票價(jià)格預(yù)測(cè)時(shí),我們可以使用類似的方法來(lái)構(gòu)建影響預(yù)測(cè)變量的因素,希望本文能起到拋磚引玉的作用。

以上就是python基于機(jī)器學(xué)習(xí)預(yù)測(cè)股票交易信號(hào)的詳細(xì)內(nèi)容,更多關(guān)于python 預(yù)測(cè)股票交易信號(hào)的資料請(qǐng)關(guān)注好吧啦網(wǎng)其它相關(guān)文章!

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 芮城县| 上饶市| 双江| 永康市| 甘肃省| 灯塔市| 监利县| 繁昌县| 荆门市| 柳州市| 中江县| 昂仁县| 长治市| 太原市| 潞西市| 南昌市| 天柱县| 安溪县| 衡东县| 玛多县| 尉犁县| 安国市| 韶山市| 利川市| 偃师市| 清新县| 海阳市| 东至县| 西城区| 金昌市| 蒙阴县| 高阳县| 齐河县| 额敏县| 茂名市| 略阳县| 樟树市| 茌平县| 汶川县| 玛纳斯县| 稷山县|