国产成人精品亚洲777人妖,欧美日韩精品一区视频,最新亚洲国产,国产乱码精品一区二区亚洲

您的位置:首頁技術(shù)文章
文章詳情頁

如何用 Python 處理不平衡數(shù)據(jù)集

瀏覽:112日期:2022-06-30 14:28:23
1. 什么是數(shù)據(jù)不平衡

所謂的數(shù)據(jù)不平衡(imbalanced data)是指數(shù)據(jù)集中各個(gè)類別的數(shù)量分布不均衡;不平衡數(shù)據(jù)在現(xiàn)實(shí)任務(wù)中十分的常見。如

信用卡欺詐數(shù)據(jù):99%都是正常的數(shù)據(jù), 1%是欺詐數(shù)據(jù) 貸款逾期數(shù)據(jù)

不平衡數(shù)據(jù)一般是由于數(shù)據(jù)產(chǎn)生的原因?qū)е碌模悇e少的樣本通常是發(fā)生的頻率低,需要很長的周期進(jìn)行采集。

在機(jī)器學(xué)習(xí)任務(wù)(如分類問題)中,不平衡數(shù)據(jù)會(huì)導(dǎo)致訓(xùn)練的模型預(yù)測(cè)的結(jié)果會(huì)偏向于樣本數(shù)量多的類別,這個(gè)時(shí)候除了要選擇合適的評(píng)估指標(biāo)外,想要提升模型的性能,就要對(duì)數(shù)據(jù)和模型做一些預(yù)處理。

處理數(shù)據(jù)不平衡的主要方法:

欠采樣 過采樣 綜合采樣 模型集成

調(diào)整類別權(quán)重或者樣本權(quán)重

2. 數(shù)據(jù)不平衡處理方法

imbalanced-learn庫提供了許多不平衡數(shù)據(jù)處理的方法,本文的例子都以imbalanced-learn庫來實(shí)現(xiàn)。

pip install -U imbalanced-learn

https://github.com/scikit-learn-contrib/imbalanced-learn

本文例子的數(shù)據(jù)來自進(jìn)行中的比賽山東省第二屆數(shù)據(jù)應(yīng)用創(chuàng)新創(chuàng)業(yè)大賽-日照分賽場(chǎng)-公積金貸款逾期預(yù)測(cè)

先來看下數(shù)據(jù)

import pandas as pdtrain_data = ’./data/train.csv’test_data = ’./data/test.csv’train_df = pd.read_csv(train_data)test_df = pd.read_csv(test_data)print(train_df.groupby([’label’]).size())# label為是否違約, 1為違約, 0為非違約# label# 0 37243# 1 2757

如何用 Python 處理不平衡數(shù)據(jù)集

2.1 欠采樣

所謂欠采樣,就是將數(shù)量多類別(記為majority)的樣本進(jìn)行抽樣,使之?dāng)?shù)量與數(shù)量少的類別(minority)的數(shù)量相當(dāng),以此達(dá)到數(shù)量的平衡。

如何用 Python 處理不平衡數(shù)據(jù)集

由于欠采樣是丟失了一部分?jǐn)?shù)據(jù),不可避免的使得數(shù)量多類別樣本的分布發(fā)生了變化(方差變大)。好的欠采樣策略應(yīng)該盡可能保持原有數(shù)據(jù)分布。

欠采樣是刪除majority的樣本,那哪些樣本可以刪除呢?

一種是overlapping的數(shù)據(jù),就是多余的數(shù)據(jù) 一種是干擾的數(shù)據(jù),干擾minority的分布

基于此,有兩種思路來欠采樣

邊界相鄰匹配,考慮在近鄰空間內(nèi)刪除majority樣本,方法如TomekLinks, NearMiss

下面這張圖,展示6NN(6個(gè)最近鄰居)

如何用 Python 處理不平衡數(shù)據(jù)集

這里重點(diǎn)講下TomekLinks, TomekLinks方法簡單的說:對(duì)每一個(gè)minority樣本找1NN(最近的鄰居),如果最近的鄰居是majority, 就形成一個(gè)tome-links,該方法人為這個(gè)majority是干擾的,將它刪除。

如何用 Python 處理不平衡數(shù)據(jù)集

from imblearn.under_sampling import TomekLinksX_train = train_df.drop([’id’, ’type’], axis=1)y = train_df[’label’]tl = TomekLinks()X_us, y_us = tl.fit_sample(X_train, y)print(X_us.groupby([’label’]).size())# label# 0 36069# 1 2757

從上可知, 有1174個(gè)tomek-link被刪除,好像刪除還不夠多,可以測(cè)試下是否對(duì)分類結(jié)果有幫助。需要注意的因?yàn)樾枰?jì)算最近鄰,所以樣本屬性必須數(shù)值屬性,或者可以轉(zhuǎn)化為數(shù)值屬性。

聚類

這類方法通過多個(gè)聚類,把原始樣本劃分成多個(gè)聚類簇,然后用每個(gè)聚類簇的中心來代替這個(gè)聚類簇的特性,完成采樣的目的。可知,這種采樣的樣本不是來自原始樣本集,而是聚類生成的。

from imblearn.under_sampling import ClusterCentroids cc = ClusterCentroids(random_state=42)X_res, y_res = cc.fit_resample(X_train, y)X_res.groupby([’label’]).size()# label# 0 2757# 1 2757

im-balance提供的欠采樣的方法如下:

Random majority under-sampling with replacement Extraction of majority-minority Tomek links Under-sampling with Cluster Centroids NearMiss-(1 & 2 & 3) Condensed Nearest Neighbour One-Sided Selection Neighboorhood Cleaning Rule Edited Nearest Neighbours Instance Hardness Threshold Repeated Edited Nearest Neighbours AllKNN 2.2 過采樣

所謂過采樣,就是將數(shù)量少的類別(minority)的樣本進(jìn)行copy,使之?dāng)?shù)量與數(shù)量多的類別(majortity)的數(shù)量相當(dāng),以此達(dá)到數(shù)量的平衡。由于復(fù)制了多份minoruty樣本,過采樣會(huì)改變minority方差。

如何用 Python 處理不平衡數(shù)據(jù)集

過采樣一種簡單的方式是隨機(jī)copy minority的樣本;另外一種是根據(jù)現(xiàn)有樣本生成人造樣本。這里介紹人造樣本的經(jīng)典算法SMOTE(Synthetic Minority Over-sampling Technique)。

SMOTE基于minority樣本相似的特征空間構(gòu)造新的人工樣本。步驟如下:

選擇一個(gè)minority樣本,計(jì)算其KNN鄰居 在K個(gè)鄰居中,隨機(jī)選擇一個(gè)近鄰 修改某一個(gè)特征,偏移一定的大小:偏移的大小為該minority樣本與該近鄰差距乘以一個(gè)小的隨機(jī)比率(0, 1), 就此生成新樣本

如何用 Python 處理不平衡數(shù)據(jù)集

from imblearn.over_sampling import SMOTEsmote = SMOTE(k_neighbors=5, random_state=42)X_res, y_res = smote.fit_resample(X_train, y)X_res.groupby([’label’]).size()# label# 0 37243# 1 37243

對(duì)于SMOTE方法,對(duì)每一個(gè)minority都會(huì)構(gòu)造新樣本。但是并不總是這樣的,考慮下面A,B,C三個(gè)點(diǎn)。從數(shù)據(jù)分布來看,C點(diǎn)很可能是一個(gè)異常點(diǎn)(Noise),B點(diǎn)是正常分布的點(diǎn)(SAFE),而A點(diǎn)分布在邊界位置(DANGER);

直觀上,對(duì)于C點(diǎn)我們不應(yīng)該去構(gòu)造新樣本,對(duì)B點(diǎn),構(gòu)造新樣本不會(huì)豐富minority類別的分布。只有A點(diǎn),如果構(gòu)造新樣本能夠使得A點(diǎn)從(DANGER)到(SAFE),加強(qiáng)minority類別的分類邊界。這個(gè)就是Borderline-SMOTE

如何用 Python 處理不平衡數(shù)據(jù)集

from imblearn.over_sampling import BorderlineSMOTEbsmote = BorderlineSMOTE(k_neighbors=5, random_state=42)X_res, y_res = bsmote.fit_resample(X_train, y)X_res.groupby([’label’]).size()# label# 0 37243# 1 37243

ADASYN方法從保持樣本分布的角度來確定生成數(shù)據(jù),生成數(shù)據(jù)的方式和SMOTE是一樣的,不同在于每個(gè)minortiy樣本生成樣本的數(shù)量不同。

先確定要生成樣本的數(shù)量 beta為[0, 1]

如何用 Python 處理不平衡數(shù)據(jù)集

對(duì)每個(gè)每個(gè)minortiy樣本,確定有它生成樣本的比例。先找出K最近鄰,計(jì)算K最近鄰中屬于majority的樣本比例(即分子),Z是歸一化因子,保證所有的minortiry的比例和為1,可以認(rèn)為是所有分子的和。

如何用 Python 處理不平衡數(shù)據(jù)集

計(jì)算每個(gè)minortiy生成新樣本的數(shù)量

如何用 Python 處理不平衡數(shù)據(jù)集

按照SMOTE方式生成樣本

from imblearn.over_sampling import ADASYN adasyn = ADASYN(n_neighbors=5, random_state=42)X_res, y_res = adasyn.fit_resample(X_train, y)X_res.groupby([’label’]).size()# label# 0 37243# 1 36690

im-balance提供的過采樣的方法如下(包括SMOTE算法的變種):

Random minority over-sampling with replacement SMOTE - Synthetic Minority Over-sampling Technique SMOTENC - SMOTE for Nominal Continuous bSMOTE(1 & 2) - Borderline SMOTE of types 1 and 2 SVM SMOTE - Support Vectors SMOTE ADASYN - Adaptive synthetic sampling approach for imbalanced learning KMeans-SMOTE ROSE - Random OverSampling Examples 2.3 綜合采樣

過采樣是針對(duì)minority樣本,欠采樣是針對(duì)majority樣本;而綜合采樣是既對(duì)minority樣本,又對(duì)majority樣本,同時(shí)進(jìn)行操作的方法。主要有SMOTE+Tomek-links和SMOTE+Edited Nearest Neighbours。

綜合采樣的方法,是先進(jìn)行過采樣,在進(jìn)行欠采樣。

from imblearn.combine import SMOTETomeksmote_tomek = SMOTETomek(random_state=0)X_res, y_res = smote_tomek.fit_sample(X_train, y)X_res.groupby([’label’]).size()# label# 0 36260# 1 362602.4 模型集成

這里的模型集成主要體現(xiàn)在數(shù)據(jù)上,即用眾多平衡的數(shù)據(jù)集(majortiry的樣本進(jìn)行欠采樣加上minority樣本)訓(xùn)練多個(gè)模型,然后進(jìn)行集成。imblearn.ensemble提供幾種常見的模型集成算法,如BalancedRandomForestClassifier

from imblearn.ensemble import BalancedRandomForestClassifierfrom sklearn.datasets import make_classificationX, y = make_classification(n_samples=1000, n_classes=3, n_informative=4, weights=[0.2, 0.3, 0.5], random_state=0)clf = BalancedRandomForestClassifier(max_depth=2, random_state=0)clf.fit(X, y) print(clf.feature_importances_) print(clf.predict([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]))

im-balance提供的模型集成的方法如下

Easy Ensemble classifier Balanced Random Forest Balanced Bagging RUSBoost2.5 調(diào)整類別權(quán)重或者樣本權(quán)重

對(duì)于很多用梯度下降方法來學(xué)習(xí)(使得某個(gè)損失Loss最小)的機(jī)器學(xué)習(xí)的方法,可以通過調(diào)整類別權(quán)重或樣本權(quán)重的方式,來一定程度上平衡不平衡數(shù)據(jù)。如gbdt模型lightgbm 中 class_weight

import lightgbm as lgbclf = lgb.LGBMRegressor(num_leaves=31, min_child_samples= np.random.randint(20,25),max_depth=25,learning_rate=0.1, class_weight={0:1, 1:10},n_estimators=500, n_jobs=30)3. 總結(jié)

本文分享了常見的幾種處理不平衡數(shù)據(jù)集的方法,并且提供imbalanced-learn的簡單例子。總結(jié)如下:

欠采樣: 減少majoritry樣本 過采樣:增加minority樣本 綜合采樣:先過采樣,在欠采樣 模型集成:制造平衡數(shù)據(jù)(majoritry樣本欠采樣+minority樣本),多次不同的欠采樣,訓(xùn)練不同的模型,然后融合 不管是欠采樣和過采樣,都一定程度的改變了原始數(shù)據(jù)的分布,可能造成模型過擬合。需要去嘗試哪種方法,符合實(shí)際的數(shù)據(jù)分布。當(dāng)然不一定有效果,去勇敢嘗試吧 just do it! 4. 參考資料 Learning from Imbalanced Data Two Modifications of CNN(Tomek links,CNN乍一看還以為卷積神經(jīng)網(wǎng)絡(luò),其實(shí)是condensed nearest-neighbor) imbalanced-learn API:https://imbalanced-learn.org/stable/

以上就是如何用 Python 處理不平衡數(shù)據(jù)集的詳細(xì)內(nèi)容,更多關(guān)于Python 處理不平衡數(shù)據(jù)集的資料請(qǐng)關(guān)注好吧啦網(wǎng)其它相關(guān)文章!

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 石林| 都兰县| 渭源县| 安西县| 福建省| 若尔盖县| 无棣县| 台东县| 京山县| 咸丰县| 沅江市| 淮滨县| 肇庆市| 利津县| 青岛市| 尼勒克县| 聂拉木县| 柞水县| 辽源市| 平武县| 鞍山市| 抚州市| 辉南县| 介休市| 福建省| 贵溪市| 漳平市| 桂东县| 卫辉市| 青阳县| 林西县| 临颍县| 北票市| 石河子市| 西和县| 临邑县| 雅江县| 连州市| 加查县| 忻州市| 舞钢市|